Intrahepatic microcirculatory disorder, parenchymal hypoxia and NOX4 upregulation result in zonal differences in hepatocyte apoptosis following lipopolysaccharide- and D-galactosamine-induced acute liver failure in rats
نویسندگان
چکیده
Although the mechanisms responsible for acute liver failure (ALF) have not yet been fully elucidated, studies have indicated that intrahepatic macrophage activation plays an important role in the pathogenesis of ALF through intrahepatic microcirculatory disorder and consequent parenchymal cell death. Intrahepatic microcirculatory disorder has been demonstrated in animal models using intravital microscopy; however, the limitations of this method include simultaneously evaluating blood flow and the surrounding pathological changes. Therefore, in this study, we devised a novel method involving tetramethylrhodamine isothiocyanate (TRITC)-dextran administration for the pathological assessment of hepatic microcirculation. In addition, we aimed to elucidate the mechanisms through which intrahepatic microcirculatory disorder progresses with relation to activated macrophages. ALF was induced in Wistar rats by exposure to lipopolysaccharide and D-galactosamine. Intrahepatic microcirculation and microcirculatory disorder in zone 3 (pericentral zone) of the livers of rats with ALF was observed. Immunohistochemical examinations in conjunction with TRITC-dextran images revealed that the macrophages were mainly distributed in zone 2 (intermediate zone), while cleaved caspase-3-positive hepatocytes, pimonidazole and hypoxia-inducible factor 1-α were abundant in zone 3. We also found that 4-hydroxy-2-nonenal and nicotinamide adenine dinucleotide phosphate oxidase (NOX)4-positive cells were predominantly located in the zone 3 parenchyma. The majority of apoptotic hepatocytes in zone 3 were co-localized with NOX4. Our results revealed that the apoptotic cells in zone 3 were a result of hypoxic conditions induced by intrahepatic microcirculatory disorder, and were not induced by activated macrophages. The increased levels of oxidative stress in zone 3 may contribute to the progression of hepatocyte apoptosis.
منابع مشابه
Peroxisome proliferator-activated receptor alpha acts as a mediator of endoplasmic reticulum stress-induced hepatocyte apoptosis in acute liver failure
Peroxisome proliferator-activated receptor α (PPARα) is a key regulator to ameliorate liver injury in cases of acute liver failure (ALF). However, its regulatory mechanisms remain largely undetermined. Endoplasmic reticulum stress (ER stress) plays an important role in a number of liver diseases. This study aimed to investigate whether PPARα activation inhibits ER stress-induced hepatocyte apop...
متن کاملAmelioration of Liver Injury by Continuously Targeted Intervention against TNFRp55 in Rats with Acute-on-Chronic Liver Failure
BACKGROUND Acute-on-chronic liver failure (ACLF) is an acute deterioration of established liver disease. Blocking the TNF (tumor necrosis factor)/TNFR (tumor necrosis factor receptor) 1 pathway may reduce hepatocyte apoptosis/necrosis, and subsequently decrease mortality during development of ACLF. We demonstrated that a long-acting TNF antagonist (soluble TNF receptor: IgG Fc [sTNFR:IgG-Fc]) p...
متن کامل0083. Hepatoprotective effects of hydrogen sulphide against acute liver failure
Introduction Acute liver failure is a fatal syndrome attributed to massive hepatocyte apoptosis that is resistant to conventional medical therapies. Consequently, liver transplantation is required in many cases. An experimental liver failure model induced by galactosamine (Gal) and lipopolysaccharide (LPS) mimics clinical acute liver failure. In this model, LPS stimulates macrophages to release...
متن کاملHepatosplanchnic haemodynamics and renal blood flow and function in rats with liver failure.
BACKGROUND Massive liver necrosis, characteristic of acute liver failure, may affect hepatosplanchnic haemodynamics, and contribute to the alterations in renal haemodynamics and function. AIMS To investigate the relation between hepatosplanchnic haemodynamics, including portal systemic shunting, and renal blood flow and function in rats with acute liver failure. METHODS Liver failure was in...
متن کاملThe Protective Effect of Cordycepin on D-Galactosamine/Lipopolysaccharide-Induced Acute Liver Injury
As the major active ingredient of Cordyceps militaris, cordycepin (3'-deoxyadenosine) has been well documented to alleviate inflammation and oxidative stress both in vitro and in vivo. To explore the potential protective effect of cordycepin in fulminant hepatic failure, mice were pretreated with cordycepin for 3 weeks followed by D-galactosamine (GalN)/lipopolysaccharide (LPS) injection. Then ...
متن کامل